Building Phylogenetic Trees

UPGMA \& NJ

UPGMA

UPGMA

\underline{U} nweighted Pair-Group Method with $\underline{\text { Arithmetic mean }}$

- Unweighted = all pairwise distances contribute equally.
- Pair-Group = groups are combined in pairs.
- Arithmetic mean = pairwise distances to each group (clade) are mean distances to all members of that group.

Sokal R \&Michener C (1958). A statistical method for evaluating systematic relationships.
University of Kansas Science Bulletin 38:1409-1438.

UPGMA: Principle

UPGMA

Principle

UPGMA: Principle

UPGMA

Principle

Repeat this process iteratively till the whole tree is obtained

UPGMA: Example

	A	B	C	D	E	F	G
A	-						
B	19	-					
C	27	31	-				
D	8	18	26	-			
E	33	36	41	31	-		
F	18	1	32	17	35	-	
G	13	13	29	14	28	12	-

Distance matrix
(can be obtained from pair-wise sequence alignments)

The following example is from Dr Richard J. Edwards http://www.southampton.ac.uk/~re1u06/teaching/upgma/

UPGMA: Example

	A	B	C	D	E	F	G
A	-						
B	19	-					
C	27	31	-				
D	8	18	26	-			
E	33	36	41	31	-		
F	18	1	32	17	35	-	
G	13	13	29	14	28	12	-

- Find the shortest distance. Here the shortest distance is 1 (between B and F)
- Join the "nodes" (sequences) with the shortest distance: Here we join B and F to create node BF.
- Depth of the new branch $=1 / 2$ of the shortest distance (so that the node-to-node path length is equal to the shortest distance). Here: $\mathrm{d}_{\mathrm{BF}} / 2=0.5$.

UPGMA: Example

	A	BF	C	D	E	F	G
A	-						
BF	$?$	-					
C	27	$?$	-				
D	8	$?$	26	-			
E	33	$?$	41	31	-		
F	18	-	32	17	35	-	
G	13	$?$	29	14	28	12	-

- Calculate mean pairwise distances with the other nodes (sequences)

UPGMA: Example

	A	BF	C	D	E	F	G
A	-						
BF	18.5	-					
C	27	31.5	-				
D	8	17.5	26	-			
E	33	35.5	41	31	-		
F	18	-	32	17	35	-	
G	13	12.5	29	14	28	12	-

- Calculate mean pairwise distances with the other nodes (sequences)

Example

$$
d_{B F, A}=\left(d_{B, A}+d_{F, A}\right) / 2=(19+18) / 2=18.5
$$

UPGMA: Example

	A	BF	C	D	E	G
A	-					
BF	18.5	-				
C	27	31.5	-			
D	8	17.5	26	-		
E	33	35.5	41	31	-	
G	13	12.5	29	14	28	-

- Repeat cycle with new shortest distances. Here, the next shortest distance is 8 (between A and $D)$. We thus join A and D with branch length $=8 / 2=4$.

UPGMA: Example

	AD	BF	C	D	E	G
AD	-					
BF	18	-				
\mathbf{C}	26.5	31.5	-			
D	8	17.5	26	-		
\mathbf{E}	32	35.5	41	31	-	
\mathbf{G}	13.5	12.5	29	14	28	-

- We join the closest nodes/groups and we recalculate the distances between nodes/groups.

Example

$$
\begin{aligned}
\mathrm{d}_{\mathrm{BF}, \mathrm{AD}} & =\left(\mathrm{d}_{\mathrm{B}, \mathrm{~A}}+\mathrm{d}_{\mathrm{F}, \mathrm{~A}}+\mathrm{d}_{\mathrm{B}, \mathrm{D}}+\mathrm{d}_{\mathrm{F}, \mathrm{D}}\right) / 4= \\
& =(19+18+18+17) / 4=18
\end{aligned}
$$

UPGMA: Example

	$\mathbf{A D}$	$\mathbf{B F}$	\mathbf{C}	\mathbf{E}	\mathbf{G}
$\mathbf{A D}$	-				
$\mathbf{B F}$	18	-			
\mathbf{C}	26.5	31.5	-		
\mathbf{E}	32	35.5	41	-	
\mathbf{G}	13.5	12.5	29	28	-

- Repeat cycle with new shortest distances. Here, the next shortest distance is 12.5 (between BF and G). We thus join BF and G with branch length $=12.5 / 2=6.25$.

UPGMA: Example

	AD	BFG	C	E	G
AD	-				
BFG	16.5	-			
C	26.5	30.67	-		
E	32	33.0	41	-	
G	13.5	12.5	29	28	-

- The distances between nodes/groups are recalculated.

UPGMA: Example

	AD	BFG	C	E
AD	-			
BFG	16.5	-		
C	26.5	30.67	-	
E	32	33.0	41	-

- The shortest disance is recalculated, the nodes/groups are joined and the branch length is calculated.

UPGMA: Example

	ADBFG	BFG	C	E
ADBFG	-			
BFG	16.5	-		
C	29	30.67	-	
E	32.6	33.0	41	-

UPGMA: Example

	ADBFG	C	E
ADBFG	-		
C	29	-	
E	32.6	41	-

UPGMA: Example

	ADBFGC	E
ADBFGC	-	
E	34	-

UPGMA: Example

Remark: The source data for this example is a selection of Cytochrome C distances from Table 3 of Fitch \& Margoliash (1967) Construction of phylogenetic tree, Science 155:279-84

	A Turtle	B Human	C Tuna	D Chicken	E Moth	F Monkey	G Dog
A	-						
B	19	-					
C	27	31	-				
D	8	18	26	-			
E	33	36	41	31	-		
F	18	1	32	17	35	-	
G	13	13	29	14	28	12	-

Slides: http://www.southampton.ac.uk/~re1u06/teaching/upgma/
Software: http://bioware.soton.ac.uk/upgma.html

